35 research outputs found

    Activating PPARβ/δ Protects against Endoplasmic Reticulum Stress-Induced Astrocytic Apoptosis via UCP2-Dependent Mitophagy in Depressive Model

    No full text
    As energy metabolism regulation factor, peroxisome proliferator-activated receptor (PPAR) is thought to be a potential target for the treatment of depression. The present study was performed to evaluate the effects of activating PPARβ/δ, the most highly expressed subtype in the brain, in depressive in vivo and in vitro models. We observed that PPARβ/δ agonist GW0742 significantly alleviated depressive behaviors in mice and promoted the formation of autophagosomes around the damaged mitochondria in hippocampal astrocytes. Our in vitro experiments showed that GW0742 could reduce mitochondrial oxidative stress, and thereby attenuate endoplasmic reticulum (ER) stress-mediated apoptosis pathway via inhibiting IRE1α phosphorylation, subsequently protect against astrocytic apoptosis and loss. Furthermore, we found that PPARβ/δ agonist induces astrocytic mitophagy companied with the upregulated UCP2 expressions. Knocking down UCP2 in astrocytes could block the anti-apoptosis and pro-mitophagy effects of GW0742. In conclusion, our findings reveal PPARβ/δ activation protects against ER stress-induced astrocytic apoptosis via enhancing UCP2-mediated mitophagy, which contribute to the anti-depressive action. The present study provides a new insight for depression therapy

    Hygroscopicity of Different Types of Aerosol Particles: Case Studies Using Multi-Instrument Data in Megacity Beijing, China

    No full text
    Water uptake by aerosol particles alters its light-scattering characteristics significantly. However, the hygroscopicities of different aerosol particles are not the same due to their different chemical and physical properties. Such differences are explored by making use of extensive measurements concerning aerosol optical and microphysical properties made during a field experiment from December 2018 to March 2019 in Beijing. The aerosol hygroscopic growth was captured by the aerosol optical characteristics obtained from micropulse lidar, aerosol chemical composition, and aerosol particle size distribution information from ground monitoring, together with conventional meteorological measurements. Aerosol hygroscopicity behaves rather distinctly for mineral dust coarse-mode aerosol (Case I) and non-dust fine-mode aerosol (Case II) in terms of the hygroscopic enhancement factor, (,532), calculated for the same humidity range. The two types of aerosols were identified by applying the polarization lidar photometer networking method (POLIPHON). The hygroscopicity for non-dust aerosol was much higher than that for dust conditions with the (,532) being around 1.4 and 3.1, respectively, at the relative humidity of 86% for the two cases identified in this study. To study the effect of dust particles on the hygroscopicity of the overall atmospheric aerosol, the two types of aerosols were identified and separated by applying the polarization lidar photometer networking method in Case I. The hygroscopic enhancement factor of separated non-dust fine-mode particles in Case I had been significantly strengthened, getting closer to that of the total aerosol in Case II. These results were verified by the hygroscopicity parameter, κ (Case I non-dust particles: 0.357 ± 0.024; Case II total: 0.344 ± 0.026), based on the chemical components obtained by an aerosol chemical speciation instrument, both of which showed strong hygroscopicity. It was found that non-dust fine-mode aerosol contributes more during hygroscopic growth and that non-hygroscopic mineral dust aerosol may reduce the total hygroscopicity per unit volume in Beijing.https://doi.org/10.3390/rs1205078

    Differentiating the Contributions of Particle Concentration, Humidity, and Hygroscopicity to Aerosol Light Scattering at Three Sites in China

    No full text
    The scattering of light by aerosol particles dictates atmospheric visibility, which is a straightforward indicator of air quality. It is affected by numerous factors, such as particle number size distribution, particle mass concentration (PM2.5), ambient relative humidity (RH), and chemical composition. The latter two factors jointly influence the aerosol liquid water content (ALWC). Here, the particle backscattering coefficient (βp) under ambient RH conditions is investigated to differentiate and quantify the contributions of aerosol properties and meteorology using comprehensive observational datasets acquired at three megacities in China, that is, Beijing (BJ), Nanjing (NJ), and Guangzhou (GZ). Overall, the temporal variations in βp under ambient RH conditions are consistent with those in ALWC at the three sites. The PM2.5 in BJ is systematically higher than in NJ and GZ, while ambient RH and aerosol hygroscopicity in NJ are much higher than in BJ and GZ. Notable differences in the variations of βp with related factors at the three sites are demonstrated. βp is more sensitive to particle hygroscopicity and mass in NJ and ambient RH in BJ. The relative contributions of these factors to βp at the three sites under different pollution conditions are differentiated and quantified. The factor with the largest impact on the variability in βp shifts from particle mass to ambient RH as air quality deteriorated to heavy pollution in BJ. The opposite is true in NJ. In GZ, the contributions of these factors to changes in βp under different pollution conditions are similar, both dominated by PM2.5.https://doi.org/10.1029/2022JD03689
    corecore